Reliable Selection of the Number of Fascicles in Diffusion Images by Estimation of the Generalization Error
نویسندگان
چکیده
A number of diffusion models have been proposed to overcome the limitations of diffusion tensor imaging (DTI) which cannot represent multiple fascicles with heterogeneous orientations at each voxel. Among them, generative models such as multi-tensor models, CHARMED or NODDI represent each fascicle with a parametric model and are of great interest to characterize and compare white matter properties. However, the identification of the appropriate model, and particularly the estimation of the number of fascicles, has proven challenging. In this context, different model selection approaches have been proposed to identify the number of fascicles at each voxel. Most approaches attempt to maximize the quality of fit while penalizing complex models to avoid overfitting. However, the choice of a penalization strategy and the trade-off between penalization and quality of fit are rather arbitrary and produce highly variable results. In this paper, we propose for the first time to determine the number of fascicles at each voxel by assessing the generalization error. This criterion naturally prevents overfitting by comparing how the models predict new data not included in the model estimation. Since the generalization error cannot be directly computed, we propose to estimate it by the 632 bootstrap technique which has low bias and low variance. Results on synthetic phantoms and in vivo data show that our approach performs better than existing techniques, and is robust to the choice of decision threshold. Together with generative models of the diffusion signal, this technique will enable accurate identification of the model complexity at each voxel and accurate assessment of the white matter characteristics.
منابع مشابه
Fast and robust detection of the optimal number of fascicles in diffusion images using model averaging theory
PURPOSE – Diffusion MRI enables non-invasive in vivo reconstruction of the white matter axon bundles hereafter referred to as fascicles. DTI is known to have a hard time depicting accurately this architecture in regions where multiple fascicles cross. New multi-compartment models [1,2,3] can unravel this issue provided that the number of fascicles is known in advance. This is a model selection ...
متن کاملOPTIMAL SELECTION OF NUMBER OF RAINFALL GAUGING STATIONS BY KRIGING AND GENETIC ALGORITHM METHODS
In this study, optimum combinations of available rainfall gauging stations are selected by a model which is consist of geo statistics model as an estimator and an optimized model. At the first, watershed is approximated to several regular geometric shapes. Then kriging calculates the variance &nbs...
متن کاملEstimation of the Parameters of the Lomax Distribution using the EM Algorithm and Lindley Approximation
Estimation of statistical distribution parameter is one of the important subject of statistical inference. Due to the applications of Lomax distribution in business, economy, statistical science, queue theory, internet traffic modeling and so on, in this paper, the parameters of Lomax distribution under type II censored samples using maximum likelihood and Bayesian methods are estimated. Wherea...
متن کاملطراحی و آموزش شبکه های عصبی مصنوعی به وسیله استراتژی تکاملی با جمعیت های موازی
Application of artificial neural networks (ANN) in areas such as classification of images and audio signals shows the ability of this artificial intelligence technique for solving practical problems. Construction and training of ANNs is usually a time-consuming and hard process. A suitable neural model must be able to learn the training data and also have the generalization ability. In this pap...
متن کاملA New Cost Model for Estimation of Open Pit Copper Mine Capital Expenditure
One of the most important issues in all stages of mining study is capital cost estimation. Determination of capital expenditure is a challenging issue for mine designers. In recent decade, quite a few number of studies have focused on proposing estimation models to predict mining capital cost. However, these efforts have not achieved to a predictor model with reliable range of error. Both of ov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information processing in medical imaging : proceedings of the ... conference
دوره 23 شماره
صفحات -
تاریخ انتشار 2013